SECTION III.

PHYSIOGRAPHY.

§ 1. General Description of Australia.

1. Geographical Position.-The Australian Commonwealth, which includes the island continent of Australia proper and the island of Tasmania, is situated in the Southern Hemisphere, and comprises in all an area of about $2,974,581$ square miles, the mainland alone containing about $2,948,366$ square miles. Bounded on the west and east by the Indian and Pacific Oceans respectively, it lies between longitudes 113° 9^{\prime} E. and $153^{\circ} 39^{\prime} \mathrm{E}$. , while its northern and southern limits are the parallels of latitude $10^{\circ} 41^{\prime} \mathrm{S}$. and $39^{\circ} 8^{\prime} \mathrm{S}$., or including Tasmania, $43^{\circ} 39^{\prime} \mathrm{S}$. On its north are the Timor and Arafura Seas and Torres Strait, on jts south the Southern Ocean and Bass Strait. ${ }^{1}$
(i.) Tropical and Temperate Regions. Of the total area of Australia the lesser portion lies within the tropics. Assuming, as is usual, that the latitude of the Tropic of Capricorn is $23^{\circ} 30^{\prime} \mathrm{S}^{2}$, the areas within the tropical and temperate zones are approximately as follows :-

AREAS OF TROPICAL AND TEMPERATE REGIONS
 of States within Tropics.

| Areas. | |
| :--- | :--- | :---: | :---: | :---: | :---: |

Thus the tropical part is roughly about one-half (0.530) of the three territories mentioned above, or about five-thirteenths of the whole Commonwealth (0.386). See hereafter Meteorology 3.
2. Area of Australia compared with that of other Countries.-That the area of Australia is greater than that of the United States of America, that it is four-fifths of that of Canada, that it is more than one-fourth of the area of the whole of the British Empire, that it is nearly three-fourths of the whole area of Europe, that it is more than 25 times as large as any one of the following, viz., the United Kingdom, Hungary, Italy, the Transvaal, and Ecuador, are facts which are not always adequately realised. It is this great size, taken together with the fact of the limited population, that gives to the problems of Australian development their unique character, and its clear comprehension is essential in any attempt to understand those problems.

[^0]The relative magnitudes may be appreciated by a reference to the following table, which shews how large Australia is compared with the countries referred to, or vice versa. Thus, to take line 1, we see that Europe is about 1_{10}^{3} times (1.29778) as large as Australia, or that Australia is about three-quarters (more accurately 0.77) of the area of Europe.

SIZE OF AUSTRALIA IN COMPARISON WITH THAT OF OTHER COUNTRIES.

[^1]

3. Relative Size of Political Subdivisions.-As already stated, Australia consists of six States and the Northern and Federal Capital Territories. The areas of these, in ralation to one another and to the total of Australia, are shewn in the following table :-

RELATIVE SIZES OF STATES AND COMMONWEALTH.

State.	Area.	Ratio which the Area of each State and Territory bears to that of other States, Territories and Commonwealth.							
		N.S.W.	Vic.	Q'land.	S.A.	W.A.	Tas.	N. Ter.	C'wlth.
New South Wales	Sq. miles. 309,460	1.00	3.522	0.462	0.814	0.317	11.806	0.591	, 104
Victoria	87,884	0.284	1.000	0.131	0.231	0.090	3.352	0.168	0.030
Queensland	670,500	2.166	7.629	1.000	1.764	0.687	25.577	1.280	0.225
South Australia	380,070	1.228	4.325	0.567	1.000	0.389	14.498	0.726	0.128
West. Australia	975,920	3.153	11.105	1.455	2.568	1.000	37.228	1.964	0.328
Tasmania	26,215	0.085	0.298	0.039	0.069	0.027	1.000	0.050	0.009
North. Territory	523,620	1.691	5.958	0.781	1.378	0.537	19.974	1.000	0.176
Fed. Capital Ter.	912	0.003	0.010	0.001	0.003	0.001	0.034	0.002	$0.00{ }^{1}$
Commonwealth	2,974,581	9.610	33.847	4.436	7.827	3.048	113.469	5.681	1.000

1. The correct decimal is 0.0003 .

Thus, looking at the top line, New South Wales is seen to be over three-and-a-half times as large as Victoria (3.522) and less than one-half the size of Queensland (0.462); or again, looking at the bottom line, the Commonwealth is shewn to be more than nine-and-a-half times as large as New South Wales (9.610), and nearly thirty-four times as large as Victoria (33.847).

These relative magnitudes are shewn in the small diagram below. It may be added that Papua (or British New Guinea), with its area of 90,540 square miles, is 0.030 of the Area of the Commonwealth. The comparatively small size of the Federal Capital Territory prevents its being shewn in this diagram.

4. Coastal Configuration.-There are no striking features in the configuration of the coast; the most remarkable indentations are the Gulf of Carpentaria on the north and the Great Australian Bight on the south. The York Peninsula on the extreme north is the only other remarkable feature in the outline. In Year Book No. 1 an enumeration of the features of the coast-line of Australia was given (see pp. 60 to 68).
(i.) Coast-liue. The lengths of coast-line, exclusive of minor indentations, both of each State and of the whole continent, are shewn in the following table:-

SQUARE MILES OF TERRITORY PER MILE OF COAST LINE.

States and Continent.

| State. | Coast-line. | Area \div
 Coast-line. | State. | | Coast-line. |
| :--- | :---: | :---: | :---: | :---: | :---: | | Area \div |
| :---: |
| Coast-line. |

1. Including Federal Capital Territory. 2. Area $2,948,366$ square miles.

For the entire Commonwealth this gives a coast-line of $12,210 \mathrm{miles}$, and an average of 244 square miles for one mile of coast line. According to Strelbitski, Europe has only 75 square miles of area to each mile of coast line, and, according to recent figures, England and Wales have only one-third of this, viz., 25 square miles.
(ii.) Historical Significance of Coastal Names. It is interesting to trace the voyages of some of the early navigators by the names bestowed by them on various coastal features-thus Dutch names are found on various points of the Western Australian coast, in Nuyt's Archipelago, in the Northern Territory and in the Gulf of Carpentaria; Captain Cook can be followed along the coasts of New South Wales and Queensland; Flinders' track is easily recognised from Sydney southwards, as far as Cape Catastrophe, by the numerous Lincolnshire names bestowed by him; and the French navigators of the end of the eighteenth and the beginning of the nineteenth century have left their names all along the Western Australian, South Australian, and Tasmanian coasts.
5. Geographical Features of Australia. - In each preceding issue of this Year Book, fairly complete information has been given concerning some special geographical element. Thus No. 1 Year Book, pp. 60-68, contains an enumeration of Coastal features. No, 2, pp. 66-67, deals with Hydrology, No. 3, pp. 59-72, with Orography, No. 4, pp. 59-82, with the Lakes of Austradia, No. 5, pp. 51-80, with the Islands of Australia, and No. 6, pp. 55-66 with the Mineral Springs of Australia. This practically completes the description of the ordinary physical features. The present issue contains a special article dealing with the geological history of Australia, particularly as regards the climatic changes evidenced therein. An orographical or vertical relief map of Australia will be found on p. 53 .

§ 2. Salient Features in the Geological History of Australia, • with Special Reference to Changes of Climate.*

(i.) The Pre-Cambrian Age. Rocks of definitely ascertained Pre-Cambrian age occupy a great area throughout Australia, while others, almost certainly of this age, underlie a vast extent of the surface of the continent. In South Australia and in the Northern Territory the association of fossiliferous Lower Cambrian strata with older schists defines the Pre-Cambrian age of the latter most satisfactorily. In Queensland, New South Wales, Victoria, Tasmania and Western Australia, lithological evidence points to the existence of Pre-Cambrian rocks; but stratigraphical and palæontological tests leave open the possibility of the beds belonging to some part of the Lower Palæozoic group. In South Australia three fairly well defined lithological series are represented by the rocks of Eyre's Peninsula, by those of northern Yorke's Peninsula, and by those of the Mount Lofty and Barossa Ranges respectively, which will probably be found to correspond with definite breaks in the geological sequence. The Mount Lofty and Barossa Range beds (Barossian series) are certainly altered sediments, including lime-

[^2]stones, but they yield no information as to climatic conditions in the Pre-Cambrian time. The same may be said of the Northern Territory beds. In most of the remaining Pre-Cambrian areas the rocks are granitoid in character, or else very highly metamorphosed crystalline schists.
(ii.) The Cambrian Age. Evidence as to climatic conditions in the Cambrian time is much more abundant and conclusive. In the Lower Cambrian beds near Adelaide there is developed a very important and extensive glacial series (Sturt River glacial beds). Some distance higher up in the series come limestones (Brighton limestones) and higher still great reefs of limestone (Archæocyathinæ limestones). It is possible, though by no means certain, that these limestones may indicate a change of the climate. The Archæocyathinæ limestones have certainly the habit of coral reefs, but the organisms are of so primeval a type that it would be rash to assume that they indicate a climate similar to that required for the growth of reef corals at the present day. In the Northern. Territory, Cambrian time was ushered in by great volcanic activity. Then followed the deposition of immense beds of limestone, probably unsurpassed in extent anywhere in the world. Evidences of shallow water origin are not wanting, hence the accumulation of thousands of feet of limestone may be taken to indicate long continued subsidence. The upper beds of the Cambrian system (Roper River quartzites and Mount McMinns beds) are of very shallow water origin, and the predominance of red beds may indicate aridity of the adjacent continenal surface.
(iii.) The Ordovician Age. In Ordovician time, deep sea water strotched over Southern Australia, and very constant and characteristic graptolite beds are widely distributed. This deep ocean did not cover the whoie of the continent, since in the "Larapintine system" of Central Australia the facies of the Ordovician system is quite different. Here were very shallow water conditions, evidenced by the occurrence of pseudomorphs of common salt crystals. In all probability Northern and Western Australia were occupied by continental land at this time.
(iv.) The Silurian Age. During the Silurian period conditions changed considerably, and South-eastern Australia was covered by shallow sea water. Immense limestone beds occur at intervals from Tasmania to Northern Queensland; and, as these are built up largely of true reef-building corals, the inference of a warm climate is not without justification. Evidences of volcanic activity are widespread.
(v.) The Devonian Age. In early Devonian time the south-eastern corner of Australia was occupied by an immense range of acid volcanoes, which built up the Snowy River porphyries. They may have attained altitudes of upwards of 15,000 feet above sea level.

Lying upon their denuded surfaces, but still of Middle Devonian age, are extensive coralline limestone, probably indicating the existence of warm shallow seas. These limestones occur at intervals from Gippsland, through New South Wales to the Burdekin and Fanning Rivers of Queensland.

Late Devonian time was marked by instability of the land surface, and by rather rapid alternations of marine and terrestrial conditions. The occurrence of red beds may indicate aridity of climate, but no deposits of salt or gypsum were produced. The earliest abundant plant remains (Lepidodendron australe) belong to this stage.
(vi.) The Carboniferous Age. In Carboniferous time the instability of level noted above continued, and became even more pronounced, so that interbedded marine and freshwater strata are a feature of this formation. Towards the close of the period, too, volcanic activity became very widespread. The organic life of the time was abundant and varied; its abrupt cessation, and the strong contrast presented by the succeeding fauna and flora, indicate that a warm climate obtained during Carboniferous time.
(vii.) The Permo-Carboniferous Age. Permo-Carboniferous time witnessed a return of intense glacial conditions, perhaps the most intense that have ever visited Australia. Victoria, South Australia, parts of Tasmania, and nearly the whole of Western Australia were continental land. Over this continent stretched a great, slow-moving ice sheet, wearing, polishing, and scratching the rock surfaces, and transporting fragments for hundreds of miles. From the directions of the scratches it is clear that the main centre
of ice distribution in Eastern Australia lay to the south-west of Tasmania. That is to say, high continental land existed, at that time, not far from what is now the eastern end of Jeffrey's Deep. After reaching sea level, near the border between Victoria and New South Wales, the ice sheet broke up into icebergs and "rafted 'great blocks of rock far to the northward. These erratics are abundant in the Hunter River coalfield and in the Macleay River district of New South Wales, and the icebergs floated well within the limits of the tropics in Queensland, Central Australia, and Western Australia.'

There is a remarkable alternation of shallow water marine beds with freshwater beds in Australia. It is in these freshwater beds that the most extensive of our productive coal measures were developed. Glacial action was not continuous throughout the whole period, but, after the first great glacial epoch, passed away for a time, and reoccurred to a much more limited extent later. The fauna and flora of the Permo-Carboniferous system offer a contrast to those of the preceding period so marked that, as above mentioned, a stupendous change of climate must have occurred in the interval indicated by the unconformity between the two formations.
(viii.) The Lower Mesozoic Age. The Lower Mesozoic (Triassic or Trias-Jura) beds of Australia seem, for the most part, to follow those of Permo-Carboniferous age, with very little evidence of great changes in the distribution of land and sea. In New South Wales and in Western Australia there appears to have been continuity of sedimentation. Nevertheless, there is a most striking life-break between the two systems, which, in absence of evidence of great land movements or long lapse of time, must be taken to indicate an extensive and relatively rapid change of climate. All the Lower Mesozoic beds of Australia are of freshwater origin, and, in Queensland, Victoria, Tasmania, and South Australia, contain workable coal measures. On the western slopes of the Main Divide of Eastern Australia and in Western Australia they contain supplies of artesian water.
(ix.). The Upper Mesozoic Age. In Upper Mesozoic time (Cretaceous) there was a very extensive transgression of the sea over the continental surface. In all probability, Australia was severed into two or more great continental islands lying to the east and west of a large mediterranean sea. In this latter, and in the ocean waters beyond the islands, were laid down marine beds. Those of the mediterranean sea, widely developed in Queensland, Northern Territory, and South Australia, and to a smaller extent in New South Wales and Western Australia, supply vast quantities of artesian water.
(x.) The Early Tertiary Age. In early Tertiary time the whole continent was subjected to a tilting movement, rising on the north and subsiding on the south. The former portion became dry land, but the sea transgressed extensively over Tasmania, Victoria, South Australia, and Western Australia, and laid down thick beds of limestone. Climatic conditions appear to have been quite mild. Extensive volcanic eruptions occurred along the borders of the old cretaceous sea.
(xi.) The Later Tertiary Age. In later Tertiary time came the gradual uplift, expelling the sea from the continental surface, and causing the formation of extensive plateau surfaces. Volcanic action on a large scale was widespread, and, in Western Victoria and South-eastern South Australia, continued to a very recent date. That the climate of Australia was much moister during this period than it is at the present day is shewn by evidences of former great extension of lake basins now dry or much shrunken, and by the remains of gigantic extinct animals, including crocodiles and turtles, in the now desert areas of Central Australia.

A third great glacial epoch occurred during late Tertiary time. On this occasion, continental ice-sheets were not developed, but the highlands of Tasmania and of the Australian Alps were covered by ice-caps, which descended some 3000 feet below the present summit levels.

The latest phases of the geological history of Australia are to be read from the distribution of land forms. These indicate that earth movements of a plateau-forming character are still taking place; the separation of Tasmania and New Guinea from the mainland, and the development of the Great Barrier Reef of Queensland, are important incidents in this phase of geological history.

§ 3. The Fauna of Australia.

An authoritative article describing in some detail the principal features of the Fauna of Australia was given in Year Books No. 1 (see pp. 103 to 109) and No. 2 (see pp. 111 to 117), while a synoptical statement appeared in No. 3 (see pp. 73 to 76). Considerations of space will, however, preclude the inclusion in this issue of more than a passing reference to the subject.

§ 4. The Flora of Australia.

In Year Books No. 1 (see pp. 109 to 114) and No. 2 (see pp. 117 to 122) a fairly complete though brief account was given of the Flora of Australia, and in Year Book No. 3 similar information in a greatly condensed form will be found on pp. 76 to 78 . Space in this issue will not permit of more than a mere reference to preceding volumes.

A special article dealing with Australian fodder plants, contributed by J. F. Maiden, Esq., F.L.S., Government Botanist of New South Wales, and Director of the Botanic Gardens, Sydney, appeared in Official Year Book No. VI., pp. 1190-6.

§ 5. Seismology in Australia.

A brief statement regarding the position of seismology and seismological record in Australia appears in Year Book No. 4, pp. 82 and 83.

Barisàl Guns. Reference may be made here to an interesting pamphlet published by Dr. J. Burton Cleland, in which the author sums up the available information regarding the peculiar explosive or booming noises heard at times in Australia as well as in other parts of the world. As far as inland Australia, at all events, is concerned, it seems clear that the explosions are of earth origin, and are probably due to the sudden sundering of immense rock masses, either as a result of climatic influences, or through folding movements in the earth's crust.

§ 6. The Geology of Australia.

1. General.-Independent and authoritative sketches of the geology of each State were given in Year Books No. 1 (see pp. 73 to 103) and No. 2 (see pp. 78 to 111). Want of space has precluded the insertion of these sketches in the present issue of the Year Book, and it has not been considered possible to give anything like a sufficient account of the geology of Australia by presenting here a mere condensation of these sketches. Reference must, therefore, be made to either Year Book No. 1 or No. 2, ut supra.
2. Geological Map of Australia.-The map of the Geology of Australia on page 54. shews the geographical distribution of the more important geological systems and formations.

§ 7. Climate and Meterology of Australia. ${ }^{1}$

1. Introductory.-In preceding Year Books some account was given of the history of Australian meteorology, including reference to the development of magnetic observations and the equipment for the determination of various climatological records. (See Year Book No. 3, pp. 79, 80). In Year Book No. 4, pp. 84 and 87 , will be found a short sketch of the creation and organisation of the Commonwealth Bureau of Meteorology and a resume of the subjects dealt with at the Meteorological Conference of 1907. Space will not permit of the inclusion of this matter in the present issue.
2. Meteorological Publications.-The following publications are issued daily from the Meteorological Bureau, viz.:-(i.) Weather charts. (ii.) Rainfall maps. (iii.) Bulletins, Victorian and Interstate, shewing pressure, temperature, wind, rain, cloud extent, and weather.
3. Prepared from data supplied by the Commonwealth Meteorologist, H. A. Hunt, Esquire, F.R.Met.S.

The Bulletins of Climatology are as follows:-No. 1.-A general discussion of the climate and meteorology of Australia, illustrated by one map and diagrams. No. 2.-A discussion of the rainfall over Australia during the ten years (1897-1906) compared with the normal, illustrated by one map. No. 3.-Notes and statistics of the vemarkable flood rains over south-eastern Australia during the winter of 1909, illustrated by five maps and diagrams. No. 4.-A discussion of the monthly and seasonal rainfall over Australia, illustrated by one map and diagram. No. 5.-An investigation into the possibility of forecasting the approximate winter rainfall for Northern Victoria, illustrated by two diagrams. No. 6. -The physiography of the proposed Federal Territory at Canberra, illustrated by a relief map and 21 plates. No. 7.-On the climate of the Yass-Canberra district, illustrated by one map. No. 8.-Physiography of Eastern Australia, with 28 text illustrations.

Commencing with January 1910, the "Australian Monthly Weather Report," oontaining statistical records from representative selected stations, with rain maps and diagrams, etc., is being published. Complete rainfall and other climatological data are published in annual volumes of meteorological statistics for each State separately.
3. General Description of Australia.-In the general description of Australia, page 48 , it is pointed out that a considerable portion (0.530) of three divisions of the Australian Commonwealth is north of the tropic of Capricorn, that is to say, within the States of Queensland and Western Australia, and the Northern Territory, no less than 1,149,3201 square miles belong to the tropical zone, and $1,020,720$ to the temperate zone. The whole area of the Commonwealth within the temperate zone, however, is $1,825,261^{2}$ square miles, thus the tropical part is about 0.386 , or about five-thirteenths of the whole, or the "temperate" region is half as large again as the "tropical" (more accurately 1.591). By reason of its insular geographical position, and the absence of striking physical features, Australia is, on the whole, less subject to extremes of weather than are regions of similar area in other parts of the globe; and latitude for latitude Australia is, on the whole, more temperate.

The altitudes of the surface of Australia range up to a little over 7300 feet, hence its climate embraces a great many features, from the characteristically tropical to what is essentially alpine, a fact indicated in some measure by the name Australian Alps given to the southern portion of the great Dividing Range.

While on the coast the rainfall is often abundant and the atmosphere moist, in some portions of the interior the rainfall is very limited, and the atmosphere dry. The distribution of forest, as might be expected, and its climatic influeace, is consequently very variable. In the interior there are on the one hand fine belts of trees, on the other there are large areas which are treeless, and where the air is hot and parched in summer. Again, on the coast, even as far south as latitude 35°, the vegetation is tropical in its luxuriance, and also somewhat so in character. Climatologically, therefore, Australia may be said to present a great variety of features. The various climatological characteristies will be referred to in detail.
4. Meteorological Divisions.- The Commonwealth Meteorologist has divided Australia, for climatological and meteorological purposes, into five divisions. The boundaries between these may be thus defined:-(a) Between divisions I. and II., the boundary between South and Western Australia, viz., the 129th meridian of east longitude ; (b) between divisions II. and III., starting at the Gulf of Carpentaria, along the Norman River to Normanton, thence a straight line to Wilcannia on the Darling River, New South Wales; (c) between divisions. II. and IV., from Wilcannia along the Darling River to its junction with the Murray ; (d) between divisions II. and V., from

[^3]the junction of the Darling and Murray Rivers, aloug the latter to Encounter Bay; (e) between divisions III. and IV., starting at Wilcannia, along the Darling, Barwon, and Dumaresq Rivers to the Great Dividing Range, and along that range and along the watershed between the Clarence and Richmond Rivers to Evans Head on the east coast of Australia; (f) between divisions IV. and V., from the junction of the Darling and Murray Rivers along the latter to its junction with the Murrumbidgee, along the Murrumbidgee to the Tumat River, and along the Tumut River to Tumut, thence a straight line to Cape Howe; (g) division V. includes Tasmania.

The population included within these boundaries at the Census of the 3rd April, 1911, was approximately as follows :-

Division	I.	II.	III.	IV.	V.
Population	282,000	429,000	607,000	$1,540,000$	i,597,000

In these divisions the order in which the capitals occur is as follows :-(i.) Perth, (ii.) Adelaide, (iii.) Brisbane, (iv.) Sydney, (v.) Melbourne, (vi.) Hobart, and for that reason the climatological and meteorological statistics will be set forth in the indicated order in this publication.
(i.) Special Climatological Stations. The latitudes, longitudes, and altitudes of speeial stations, the climatological features of which are graphically represented hereinafter, are as follows:-

Special climatological stations.

Locality.	$\begin{gathered} \text { Height } \\ \text { above } \\ \text { Sea } \\ \text { Level. } \end{gathered}$	Latitude. S.	Longitude. E.	Locality.	$\left\lvert\, \begin{gathered} \text { Height } \\ \text { above } \\ \text { Sea } \\ \text { Level. } \end{gathered}\right.$	Latitude. S.	Longitu E.
Perth	Feet.	deg. min.	deg. 115 151 18	Darwin	$\begin{array}{r}\text { Feet. } \\ \hline 97\end{array}$	$\underset{12}{ } \underset{28}{\operatorname{deg}} \quad .$	${\underset{130}{\text { deg. min. }}}^{2}$
Adelaide	140	$34 \quad 56$	13835	Daly Waters	700	1616	13323
Brisbane	137	$27 \quad 28$	$153-2$	Alice Springs	1926	23188	$133 \quad 37$
Sydney ...	146	$33 \quad 52$	15112	Dubbo	870	3218	14835
Melbourne	115	3750	$144 \quad 59$	Laverton	1530	$28 \quad 40$	$122 \quad 23$
Hobart ..	160	$42 \quad 53$	14720	Coolgardie	1402	$30 \quad 57$	$121 \quad 10$

5. Temperatures.-In respect of Australian temperatures generally it may be pointed out that the isotherm for 70° Fahrenheit extends in South America and South Africa as far south as latitude 33°, while in Australia it reaches only as far south as latitude 30°, thus shewing that, on the whole, Australia has a more temperate climate when compared latitude for latitude with places in the Southern Hemisphere.

The comparison is even more favourable wheu the Northern Hemisphere is included in the comparison, for in the United States the 70° isotherm extends in several of the western States as far uorth as latitude 41°. In Europe the same isotherm reaches almost to the southern shores of Spain, passing, however, afterwards along the northern shores of Africa till it reaches the Red Sea, when it bends northward along the eastern shore of the Mediterranean till it reaches Syria. In Asia nearly the whole of the land area south of latitude $40^{\circ} \mathrm{N}$. has a higher isothermal value than 70°.

The extreme range of shade temperatures in summer and winter in a very large part of Australia amounts to probably only 81°. In Siberia, in Asia, the similar range is no less than 171°, and in North America 153°, or approximately double the Australian range.

Along the northern shores of the Australian contiuent the temperatures are very equable. At Darwin, for example, the difference in the means for the hottest and coldest months is only 8.5°, and the extreme readings for the year, that is, the highest maximum in the hottest month and the lowest reading in the coldest month, shew a difference of under 50°.

Coming southward the extreme range of temperature increases gradually on the coast, and in a more pronounced way inland.

The detailed temperature results for the several capitals of the States of Australia are shewn in the Climatological Tables hereinafter.

Hottest and Coldest Parts. A comparison of the temperatures recorded at coast and inland stations shews that, in Australia as in other continents, the range increases with increasing distance from the coast.

In the interior of Australia, and during exceptionally dry summers, the temperature occasionally reaches or exceeds 120° in the shade, and during the dry winters the major portion of the country to the south of the tropics is subject to ground frosts. An exact knowledge of temperature disposition cannot be determined until the interior becomes more settled, but from data procurable, it would appear that the hottest area of the continent is situated in the northern part of Western Australia about the Marble Bar and Nullagine goldfields, where the maximum shade temperature during the summer sometimes exceeds 100° for days, and even weeks' continuously. The coldest part of the Commonwealth is the extreme south-east of New South Wales and extreme east of Victoria, namely, the region of the Australian Alps. Here the temperature seldom, if ever, reaches 100° even in the hottest of seasons.

In Tasmania also, although occasionally hot winds may cross the Straits and cause the temperature to rise to 100° in the low-lying parts, yet the island as a whole enjoys a most moderate and equable range of temperature throughout the year.

Monthly Maximum and Minimum Temperatures. The mean monthly maximum and minimum temperatures can be best shewn by means of graphs, which exhibit the nature of the fluctuation of each for the entire year. In the diagram (on page 71) for nine representative places in Australia, the upper heavy curves shew the mean maximum, the lower heavy curves the mean minimum temperatures based upon daily observations. On the same diagram the thin curves shew the relative humidities fsee next paragraph).
6. Relative Humidity. - Next after temperature the degree of himidity may be regarded as of great importance as an element of climate; and the characteristic differences of relative humidity between the various capitals of Australia call for special remark. For six representative places the variations of humidity are shewn on the graph on page 71, which gives results based upon daily observations of the dry and wet bulb thermometers. Hitherto difficulties have been experienced in many parts of Australia in obtaining satisfactory observations for a continuous period of any length. For this reason it has beon thought expedient to refer to the record of humidity at first order stations only, where the results are thoroughly reliable. Throughout, the degree of humidity given will be what is known as relative humidity, that is, the percentage of aqueous vapour actually existing to the total possible if the atmosphere were saturated.

The detailed humidity results for the several State capitals are given in the Climatological Tables hereinafter. From these, it is seen that, in respect of relative humidity, Sydney has the first place, while Melbourne, Hobart, Brisbane, Perth, and Adelaide follow in the order stated, Adelaide being the driest. The graphs on page 71 shew the annual variations in humidity. It will be observed that the relative humidity is ordinarily but not invariably great when the temperature is low.
7. Evaporation.-The rate and quantity of evaporation in any territory is influenced by the prevailing temperature, and by atmospheric humidity, pressure and movement. In Australia the question is of perhaps more than ordinary importance; since in its drier regions water has often to be conserved in "tanks" ${ }^{1}$ and dams. The magnitude of the economic loss by evaporation will be appreciated from the records on pages 72 and 80 to 85 , which show that the yearly amount varies from about $32 \frac{1}{2}$ inches at Hobart to 97 inches at Alice Springs in the centre of the Continent.
(i.) Monthly Evaporation Curves. The curves showing the mean monthly evaporation in various parts of the Commonwealth will disclose how characteristically different are the amounts for the several months in different localities. The evaporation for characteristic places is shewn on diagram shewing also rainfalls (see page 72).

[^4](ii.) Loss by Evaporation. In the interior of Australia the possible evaporation is often greater than the actual rainfall. Since, therefore, the loss by evaporation depends largely on the exposed area, tanks and dams so designed that the surface shall be a minimum are advantageous. Similarly, the more protected from the direct rays of the sun and from winds, by means of suitable tree planting, the less will be the loss by evaporation: these matters are of more than ordinary concern in the drier districts of Australia.
8. Rainfall.-As even a casual reference to climatological maps, indicating the distribution of rainfall and prevailing direction of wind, would clearly shew, the rainfall of any region is determined mainly by the direction and route of the prevailing winds, by the varying temperatures of the earth's surface over which they blow, and by the physiographical features generally.

Australia lies within the zone of the south-east and westerly trade winds. The southern limit of the sonth-east trade strikes the eastern shores at about 30° south latitude. Hence, we find that, with very few exceptions, the heaviest rains of the Australian continent are precipitated along the Pacific slopes to the north of that latitude, the varying quantities being more or less regulated by the differences in elevation of the shores and of the chain of mountains, upon which the rain-laden winds blow, from the New South Wales northern border to Thursday Island. The converse effect is exemplified on the north-west coast of Western Australia from the summer south-east trade winds. Here the prevailing winds, blowing from the interior of the continent instead of from the ocean, result in the lightest coastal rain in Australia.

The westerly trade winds, which skirt the southern shores, are responsible for the very reliable, although generally light, rains enjoyed by the south-western portion of Western Australia, by the south-eastern agricultural areas of South Australia, by a great part of Victoria, and by the whole of Tasmania.
(i.) Factors determining Distribution and Intensity of Rainfall.
(ii.) Time of Rainfall.

In preceding Year Books (see No. $6 \mathrm{pp} .72,73,74$) some notes were given of the various factors governing the distribution, intensity and period of Australian rainfall.
(iii.) Wettest and Driest Regions. The wettest known part of Australia is on the north-east coast of Queensland, between Port Douglas and Cardwell, where three stations situated on, or adjacent to, the Johnstone and Russell Rivers have an average annual rainfall of between 150 and 166 inches. The maximum and minimum falls there are:-Goondi, 241.53 in 1894 and 76.24 inches in 1902, or a range of 165.29 inches; Innisfail, 211.24 in 1894 and 69.87 inches in 1902, or a range of 141.37 inches; Harvey Creek, 238.45 in 1901 and 80.47 inches in 1902 , or a range of 157.98 inches.

On three occasions more than 200 inches have been recorded at Goondi, the last of these being in 1910, when 204.82 inches were registered. The record at this station covers a period of 20 years.

Harvey Creek in the shorter period of 16 years has twice exceeded 200 inches, the total for 1910 being 201.28 inches.

The driest known part of the continent is about the Lake Eyre district in South Australia (the only part of the continent below sea level), where the annual average is but 5 inches, and where it carely exceeds 10 inches for the twelve months.

The inland districts of Western Australia have until recent years been regarded as the driest part of Australia, but authentic observations taken during the past decade at settled districts in the east of that State shew that the annual average is from 10 to 12 inches.
(iv.) Quantities and Distribution of Rainfall generally. The departure from the normal rainfall increases greatly and progressively from the southern to the northern shores of the continent, and similarly also at all parts of the continent, subject to
capricious monsoonal rains, as the comparisons hereunder will shew. The general distribution is best seen from the map on page 77 , shewing the areas subject to average annual rainfalls lying between certain limits. The areas enjoying varying quantities of rainfall determined from the latest available information are shewn in the following table:-

DISTRIBUTION OF AVERAGE RAINFALL.

Average Annual Rainfall.	N.S.W.	Victoria.	Queensland.	Soutb Aust.	Northe'n 'Territ'y.	$\begin{array}{\|c\|} \text { Western } \\ \text { Anst. } \end{array}$	Tasmania.	$\begin{aligned} & \text { Common- } \\ & \text { wealth. } \end{aligned}$
nder 10 inches	sqr. ml	sqr.mis.	sqr.mals.	sa	sqr.mls.	sqr.mas.	sqr.mls.	sar.mis.
10-15					138,190	513,653		
15-20	57,639	12,626	116,790	14,190	62,920	89,922	937	355,024
20-30	77,202	29,317	218,528	13,827	93,470	95,404	7,559	535,307
30-40	30,700	14,029	80,556	984	40,690	40,750	4,588	212,297
Over 40	22,566	12,000	94,099	64	46,780	3,376	10,101	188,986
Total area	310,372	87,884	670,500	380,070	523,620	975,920	26,215	2,974,581

* Over 3030 sar. miles no records available.

Referring first to the capital cities, the complete records of which are given on the following page, it is seen that Sydney with a normal rainfall of 48.27 inches occupies the chief place, Brisbane, Perth, Melbourne, Hobart and Adelaide following in that order, Adelaide with 21.04 inches being the driest. The extreme range from the wettest to the driest year is greatest at Brisbane (72.09 inches) and least at Adelaide (17.44 inches).

In order to shew how the rainfall is distributed throughout the year in various parts of the continent, the figures of representative towns have been selected. (See map on page 78). Darwin, typical of the Northern Territory, shews that in that region nearly the whole of the rainfall occurs in the summer months, while little or nothing falls in the middle of the year. The figures of Perth, as representing the south-western part of the continent, are the reverse, for while the summer months are dry, the winter ones are very wet. In Melbourne and Hobart the rain is fairly well distributed throughout the twelve months, with a maximum in October in the former, and in November in the latter. The records at Alice Springs and Daly Waters indicate that in the central parts of Australia the wettest months are in the summer and autumn. In Queensland, as in the Northern Territory, the heaviest rains fall in the summer months, but good averages are also maintained during the other seasons.

On the coast of New South Wales, the first six months of the year are the wettest, with slight excesses in April and July; the averages during the last six months are fair and moderately uniform. In general it may be said that one-fourth of the area of the continent, principally in the eastern and northern parts, enjoys an annual average rainfall of from 20 to 50 inches, the remaining three-fourths receiving generally from 10 to 15 inches.
(v.) Curves of Rainfall and Evaporation. The relative amounts of rainfall and evaporation at different times through the year are best seen by referring to the graphs for a number of characteristic places. (See page 72). It will be recognised at once how large is the evaporation when water is fully exposed to the direct rays of the sun, and to wind, etc.
(vi.) Tables of Rainfall. The table of rainfall for a loug period of years for each of the various Australian capitals affords information as to the variability of the fall in successive years, and the list of the more remarkable falls furnishes information as to what may be expected on particular occasions.

RAINFALL AT THE AUSTRALIAN CAPITALS， 1840 to 1912.

	Pbrth			adelame．			Bribbane．			Sydey．			Melboutne．			Hobart．		
year		$\begin{aligned} & \text { 合 } \\ & \text { oे } \\ & \dot{c} \\ & \hline \end{aligned}$	0^{7}					$\begin{aligned} & \ddot{B} \\ & \stackrel{\rightharpoonup}{0} \\ & \dot{8} \\ & \dot{Z} \end{aligned}$					品				$\begin{gathered} \dot{\alpha} \\ \stackrel{\leftrightarrow}{A} \end{gathered}$	
	\because	\cdots	\cdots		${ }_{93}^{99}$						$\begin{aligned} & 150 \\ & 1420 \end{aligned}$							
	\cdots	\cdots			122		${ }^{281.87}$			48.32 68.78 6	${ }_{168}^{137}$		${ }_{21.54}^{31.16}$			60		
	\cdots	\cdots			136		51.60			70.66	157							
	．	\cdots	．		$\left.\left\lvert\, \begin{array}{l} 1145 \\ 114 \end{array}\right.\right]$		39		41.83	${ }_{43}^{62} 83$	139							
	\because	\cdots			1109				（7 yr．）									
					110					年退．19								
	\cdots		．		184					488	157		26.98					
	\cdots			27．44	118					${ }_{43.79}$								
	\cdots	\ldots	．	27．08	1185						${ }_{136}^{130}$							
	\cdots		\cdots		${ }^{124}$								$\because 8$					
	．	…	…		118						${ }_{135}^{136}$			${ }^{134}$			${ }_{113}^{151}$	
	．		\cdots		105	23.75	${ }^{43.00}$				${ }_{139}^{139}$	40.75	${ }^{26.01}$				129	22.5
			\cdots		119	…	54.63	144		析	180	．．						
	．		．	24．04	14		69.	155			159		$\underline{29}$					
	\cdots				145		68.83	146		47.08	159			9				
	\cdots		\cdots	19.75	108			114			1185		${ }_{1}^{27.4}$	114				
	\cdots	\ldots	\cdots		116			142		36.18	156			107				\ldots
					112	10.85		112	47.55			49.99			24			25.0
	\ldots	\ldots	\because	14．47484，	117		39	114		48.00	150							
					13			${ }_{119}^{154}$		52．27	141					18.25	${ }^{131}$	
	．		．	${ }_{2}^{28.60}$	146		49.	131		37．12	151			136		${ }^{31}$	160	
	\cdots	\cdots	\cdots	11.00	127			135		44							${ }_{138}^{157}$	
					${ }_{110}^{157}$			162									181	
		103			1135			119										
		1136	${ }^{29.64 .64 .}$	${ }_{20}^{22}$	${ }_{130}^{112}$	21.2		157	$\stackrel{53.59}{ }$			54.03			28.1	${ }_{21.07}^{29.76}$	．．．	
18		116		${ }^{22.48} 1$	142		${ }_{40}^{49}$	134			142			47			．．．	
		12	．		161		3．20	114									160	
				18.	1338		43.49 2685 28	112		34991				1123		${ }^{28}$	171	
		${ }_{89} 11$					${ }^{263.65}$											
		117			164												174	
		117	33.2		${ }_{143}^{131}$	19.30		143	45．93			$\stackrel{42.95}{ }$			24.6		151	23.
189		123			13			162		42							173	
			．．	${ }_{21.53}^{14.05}$	137												160	
		14		${ }^{22} 2.49$	139			147									146	
		123	\cdots	${ }_{21}^{20.28}$	130		4			． 86				131		25.40	19	
			．．．		119			${ }_{1}^{121}$			157						${ }_{153}^{136}$	
		118	33．5		116	20．71		131	56．88	，	143	5i．12			23.6	20.40	164	24.29
0		12	．．	21．68	139			141									135	
		12	．		${ }^{124}$			110			149						147	
		14		25．4	133					${ }_{38.62}$							139	
			．	20.31	117		${ }^{33.23}$	124		5								
		121		${ }_{26.51}^{22.28}$			36. 42							114			155	
		1132	34.05	${ }_{24.56}^{17.78}$	125												167	
		107																
		13			116			133		教							305	
	${ }^{27.85}$	123		9．57			41.32			${ }_{4}^{50.24}$			－ 0.37	157		23.	181	
Yrs.			（3）															

9. Remarkable Falls of Rain.-The following are the more remarkable falls of rain in the States of New South Wales, Queensland, Western Australia, and South Australia, which have occurred within a period of twenty-four hours:-
heavy rainfalls, new south wales, UP TO 1912 INCLUSIVE.

Name of Town or Locality.	Date.	Amnt.	Name of Town or Locality.	Date.	Amint
Anthony		ins.			ins.
	28 Mar., 1887	17.14	Kembla Heights	13 Jan., 1911	17.46
	15 Jan., 1890	13.13	Leconfield ...	9 Mar., 1893	14.53
Araluen	15 Feb., 1898	13.36	Madden's Creek	. 13 Jan., 1911	18.68
Berry	13 Jan., 1911	12.05	Maitland W.	... 9 Mar., 1893	14.79
Billambil	14 Mar., 1894	12.94	Major's Creek	... 14 Feb., 1898	12.32
Bomaderry...	13 Jan., 1911	13.03	Morpeth 9 Mar., 1893	21.52
Broger's Creek	14 Feb., 1898	20.05	Mount Kembla	13 Jan., 1911	18.25
	19 July, 1910	12.22	Nepean Tunnel	14 Feb., 1898	12.30
	13 Jan., 1911	20.83	Nowra	13 Jan., 1911	13.00
Bulli Mountain	13 F'eb., 1898	17.14	Prospect	. 28 May, 1889	12.37
Camden Haven	22 Jan., 1895	12.23	Richmond	.. 28 "	12.18
Castle Hill...	28 May, 1889	13.49	Rooty Hill	... 27	11.85
Colombo Lyttleton	5 Mar., 1893	12.17	Taree	28 Feb., 1892	12.24
Oondong ...	27 , 1887	18.66	Terara	26 , 1873	12.57
Cordeaux River	14 Feb., 1898	22.58	Tomago	9 Mar., 1893	13.76
	13 Jan., 1911	14.52	Tongarra Farm	14 Feb., 1898	15.12
Dapto West	14 Feb., 1898	12.05	Towamba ...	5 Mar., 1893	20.00
Dunheved ...	28 May, 1889	12.40	South Head		
Holy Flat ...	12 Mar., 1887	12.00	(near Sydney)	... 29 Apr., 1841	20.12
,, , ...	28 Feb., 1892	12.24	,, , ,	...116 Oct., 1844	20.41

heavy rainfalls, queensland, up to 1912 Inclusive.

Name of Town or Locality.		Date.	Amnt.	Name of Town or Locality.	Date.	Amnt.
			ins.			ins.
Anglesey		26 Dec., 1909	18.20	Crohamhurst		
Ayr		20 Sep., 1890	14.58	(Rlackall Range	2 Feb., 1893	35.71
Bloomsbu		14 Feb., 1893	17.40		9 June,	13.31
		10 Jan., 1901	16.62	", "	9 Jan., 1898	19.55
Bowen		13 Feb., 1893	14.65	,"	6 Mar.	16.01
Brisbane	\cdots	21 Jan., 1887	18.31		26 Dec., 1909	13.85
Bromby Pa	rk (Bowen)	14 Feb., 1893	13.28	Croydon	29 Jan., 1908	15.00
Brookfield		14 Mar., 1908	14.95	Cryna (Beaudesert).	21 " 1887	14.00
Buderim	Countain	11 Jan., 1898	26.20	Donaldson		
Burketown		15 , 1891	13.58	(now Granada)	8 , 1911	13.50
	12 Mar., 1903	14.52			14.30
Cairns		11 Feb., 1889	14.74	Dungeness	16 Mar., 1893	22.17
	\cdots	21 Apr., "	12.40	")...	17 Apr., 1894	14.00
"	..	5 ", 1891	14.08	Dunira	9 Jan., 1898	18.45
	..	11 Feb., 1911	15.17		6 Mar.,	15.95
		2 Apr.,	20.16	Enoggera Railway	14 , 1908	12.14
Cape Graft		5 Mar., 1896	13.37	Ernest Junction		13.00
Cardwell	\ldots..	30 Dec., 1889	12.00	Flat Top Island	22 Dec., 1909	12.96
,	23 Mar., 1890	12.00	Floraville.	11 Mar., 1903	12.86
	...	18 ", 1904	18.24	Flying Fish Point .	7 Apr., 1912	16.06
	\ldots..	3 Apr., 1911	12.84	Geraldton		
Clare		26 Jan., 1896	15.30	(now Innisfai	11 Feb., 1889	17.13
Collaroy	30 " 1896	14.25	, , .	31 Dec.,	12.45
Cooktown	22 " 1903	12.49	, "	6 Apr., 1894	16.02
Cooran	1 Feb., 1893	13.62	", ",	-18 ", 1899	13.20
		26 Dec., 1908	14.08	, "	. 24 Jan., 1900	15.22
Cooroy	...	9 June, 1893	13.60	, ",	i29 Dec., 1903	21.22
"		10 Jan., 1898	13.50		, 11 Feb., 1911	14.48

HEAVY RAINFALLS, QUEENSLAND-Continued.

HEAVY RAINFALLL, QUEENSLAND-Continued.

Name of Town or Locality.	Date.	Amat.	Name of Town or Locality.		Date.	Amat
Port Dougla	5 Mar., 1887	$\begin{aligned} & \text { ins. } \\ & 13.00 \end{aligned}$	Victoria		1901	ins. 16.67
	10 ", 1904	16.34	Walsh Riv		1 Apr., 1911	13.70
"	11 Jan., 1905	14.68	Woodford		2 Feb., 1893	14.93
" ",	17 Mar., 1911	16.10	Woodlan	(Yeppoon)	25 Mar., 1890	14.25
	1 Apr.,	31.53	"	(Yeppon)	31 Jan., 1893	23.07
Ravenswood	24 Mar., 1890	17.00	",		9 Feb., 1896	13.97
Redeliffe	21 Jan., 1887	14.00		"	7 Jan., 1898	14.50
	16 Feb., 1893	17.35	Woombye		26 Dec., 1909	13.42
Rosedale	6 Mar., 1898	12.60	Yandina		1 Feb., 1893	20.08
Sandgate	16 Feb., 1893	14.03	,,	9 June,	12.70
Somerset	28 Jan., 1903	12.02	",	9 Jan., 1898	19.25
St. Helens (Mackay)	24 Feb., 1888	12.00	",	7 Mar.,	13.52
St. Lawrence	17 Feb., 1888	12.10			28 Dec., 1909	15.80
	30 Jan., 1896	15.00	Yarrabah	...	11 Feb., 1911	12.00
Tewantin	30 Mar .1904	12.30			2 Apr., ",	30.65
The Hollow (Mackay)	23 Feb., 1888	15.12	Yeppoon		31 Jan., 1893	20.05
Thornborough	20 Apr., 1903	18.07		8 , 1898	18.05
Townsville	24 Jan., 1892	19.20	"		3 F'eb., 1906	14.90
", ...	28 Dec., 1903	15.00		1911	14.92

heavy rainfalls, SOUTH auStralia, up to 1912 inclusive.

Name of Town or Locality.	Date.	Amot.	Name of Town or Locality.	Date.	Amnt.
Borroloola	14 Mar., 1899	ins.	Pine Creek	8 Jan., 1897	ins.
Lake Nash...	21 " 1901	10.25	Port Darwin	7 Jan., 1897	11.67

HEAVY RAINFALLS, WESTERN AUSTRALIA, UP TO 1912 INCLUSIVE.

10. Snowfall.-Light snow has been known to fall even as far north, occasionally, as latitude $31^{\circ} \mathrm{S}$., and from the western to the eastern shores of the continent. During exceptional seasons it has fallen simultaneously over two-thirds of the State of New South Wales, and has extended at times along the whole of the Great Dividing Range, from its southern extremity in Victoria as far north as Toowoomba in Queensland. During the winter snow covers the ground to a great extent on the Australian Alps for several months, where also the temperature falls below zero Fahrenheit during the night, and in the ravines around Kosciusko and similar localities the snow never entirely disappears.

The antarctic "V"-shaped disturbances are always associated with our most pronounced and extensive snowfalls. The depressions on such occasions are very steep in the vertical area, and the apexes are unusually sharp-pointed and protrude into very low latitudes, sometimes even to the tropics.
11. Hail.-Hail falls throughout Australia most frequently along the southern shores of the continent in the winter, and over south-eastern Australia during the summer months. The size of the hailstones generally increases with distance from the coast, a fact which lends strong support to the theory that hail is brought about by ascending currents. Rarely does a summer pass without some station experiencing a fall of stones exceeding in size an ordinary hen-egg, and many riddled sheets of light-gauge galvanised iron bear evidence of the weight and penetrating power of the stones.

Hail storms occur most frequently in Australia when the barometric readings indicate a flat and unstable condition of pressure. They are almost invariably associated with tornadoes or tornadic tendencies, and on the east coast the clouds from which the stones fall are generally of a remarkable sepia-coloured tint.
12. Barometric Pressures.-The mean annual barometric pressure (corrected to sealevel and standard gravity) in Australia varies from 29.80 inches on the north coast to 29.92 inches over the central and 30.03 inches in the southern parts of the continent. In January the mean pressure ranges from 29.70 inches in the northern and central areas to 29.91 inches in the southern. The July mean pressure ranges from 29.90 inches at Darwin to 30.13 at Alice Springs. Barometer readings, corrected to mean sea-level, have, under anticyclonic conditions in the interior of the continent, ranged from 30.81 inches to as low as 28.44 inches. This lowest record was registered at Townsville during a hurricane on the 9th March, 1903. The mean annual fluctuations of barometric pressure for the capitals of Australia are shewn on page 73.
13. Wind.-Notes on the distinctive wind currents in Australia were given in preceding Year Books (see No. 6, page 83) and are here omitted to save space.
14. Cyclones and Storms.-The "elements" in Australia are ordinarily peaceful, and although severe cyclones have visited various parts, more especially coastal areas, such visitations are rare, and may be properly described as erratic.

During the winter months the southern shores of the continent are subject to cyclonic storms, evolved from the V-shaped depressions of the southern low-pressure belt. They are felt most severely over the south-western parts of Western Australia, to the south-east of South Australia, in Bass Straits, including the coast line of Victoria, and on the west coast of Tasmania. Apparently the more violent wind pressures from these cyclones are experienced in their northern half, that is, in that part of them which has a north-westerly to a south-westerly circulation.

Occasionally the north-east coast of Queensland is visited by hurricanes from the north-east tropics. During the first three months of the year these hurricanes appear to have their origin in the neighbourhood of the South Pacific Islands, their path being a parabolic curve of south-westerly direction. Only a small percentage, however, reach Australia, the majority recurving in their path to the east of New Caledonia.

Very severe cyclones, popularly known as "Willy Willies," are peculiar to the north-west coast of Western Australia from the months of December to March inclusive. They apparently originate in the ocean, in the vicinity of Cambridge Gulf, and travel in a south-westerly direction with continually increasing force, displaying their greatest energy near Cossack and Onslow, between latitudes 20° and 22° South. The winds in these storms, like those from the north-east tropics, are very violent and destructive, causing great havoc amongst the peari-fisher:. The greatest velocities are usually to be found in the south-eastern quadrant of the cyclones, with north-east to east winds. After leaving the north-west coast, these storms either travel southwards, following the coast-line, or cross the continent to the Great Australian Bight. When they take the latter course their track is marked by torrential rains, as much as 29.41 inches, for example, being recorded at Whim Creek from one such occurrence. Falls of 10 inches
and over have frequently been recorded in the interior of Western Australia fromr similar storms.

Some further notes on severe cyclones and on "Southerly Bursters," a characteristic feature of the eastern part of Australia, will be found in previous issues of the Year Book (see No. 6, pp. 84, 85, 86).
15. Influences affecting Australian Climate.-Australian history does not cover a sufficient period, nor is the country sufficiently occupied, to ascertain whether or not the advance of settlement has materially affected the climate as a whole. Local changes therein, however, have taken place, a fact which suggests that settlement and the treatment of the land have a distinct effect on local conditions. For example, the mean temperature of Sydney shews a rise of two-tenths of a degree during the last twenty years, a change probably brought about by the great growth of residential and manufacturing buildings within the city and in the surrounding suburbs during that period. Again, low-lying lands on the north coast of New South Wales, that originally were seldom subject to frosts, have with the denudation of the surrounding hills from forests experienced annual visitations, the probable explanation being that, through the absence of trees, the cold air of the high lands now fows, unchecked and untempered, down the sides of the hills to the valleys and lower lands.
(i.) Influences of Forests on Climate. As already indicated, forests doubtless exercise a great influence on local climate, and hence, to the extent that forestal undertakings will allow, the weather can be controlled by human agency. The direct action of forests is an equalising one; thus, especially in equatorial regions and during the warmest portion of the year, they considerably reduce the mean temperature of the air. They also reduce the diurnal extremes of their shade temperatures, by altering the extent of radiating surface, by evaporation, and by checking the movement of air. While decreasing evaporation from the ground, they increase the relative humidity. Vegetation greatly diminishes the rate of flow-off of rain, and the washing away of surface soil. Thus, when a region is protected by trees, steadier water supply is ensured, and the rainfall is better conserved. In regions of snowfall the supply of water to rivers is similarly regulated, and without this and the sheltering influence of ravines and "gullies," watercourses supplied mainly by melting snow would be subject to alternate periods of flooding and dryness. This is borne out in the inland rivers. Thus, the River Murray, which has never been known to run dry, derives its steadiness of flow mainly through the causes above indicated.
(ii.) Direct Influences of Forest on Rainfall. Whether forests have a direct influence on rainfall is a debatable question, some authorities alleging that precipitation is undoubtedly induced by forests, while others contend the opposite.

Sufficient evidence exists, however, to establish that, even if the rainfall has not increased, the beneficial effect of forest lands in tempering the effects of the climate is more than sufficient to disclose the importance of their protection and extension.

It is the rapid rate of evaporation, induced by both hot and cold winds, which injures crops and makes life uncomfortable on the plains. Whether the forest aids in increasing precipitation there may be doubt, but nobody can say that it does not check the winds and the rapid evaporation due to them.

Trees as wind-breaks have been successfully planted in central parts of the United States, and there is no reason why similar experiments should not be successful in many parts of our treeless interior. The belts should be planted at right angles to the direction of the prevailing parching winds, and if not more than half a mile apart will afford shelter to the enclosed areas.

In previous issues some notes on observations made in other countries were added (see Year Book No. 6, pp. 86 to 95).
16. Comparison of Rainfalls and Temperatures.-For the purpose of comparison the following lists of rainfalls and temperatures are given for various important cities throughout the world, for the site of the federal capital, and for the capitals of the Australian Staites :-

GRAPHS SHEWING ANNUAL FLUCTUATIONS OF MEAN MAXIMUM AND MINIMUM TEMPERATURE AND HUMIDITY IN SEVERAL PARTS OF THE COMMONWEALTU OF AUSTRALIA.

Explanation of the Graphs of Temperature and Humidity.-In the above graphs, in which the heavy lines denote 'temperature' and the thin lines 'humidity,' the fluctuations of mean temperature and mean humidity are shewn throughout the year. These curves are plotted from the data given in the Climatological Tables hereinafter. The temperatures are shewn in degrees Fahrenheit, the inner columns giving the corresponding values in Centigrade degrees. Humidities have not been obtained for Darwin, Daly Waters, and Alice Springs.

For the thin lines the degree numbers represent relative'.humidities, or the percentages of actual saturation on the total for the respective temperatures.

The upper temperature line represents the mean of the maximum, and the lower line the mean of the minimum results; thus the curves also shew the progression of the range between maximum and minimum temperatures throughout the year. The humidity curves shew the highest and lowest values of the mean monthly humidity at 9 a.m. recorded during a series of years.

Interpretation of the Graphs.-The curves denote mean monthly values. Thus, trking for example, the temperature graphs for Perth, the mean readings of the maximum and minimum temperatures for a number of years on 1st January would give respectively about 83° Fahr. and 62° Fahr. Thus the mean range of temperature on that date is the difference, viz., 21°. Similarly, observations about 1st June would give respectively about 66° Fahr. and 51° Fahr., or a range of 15°.

In a similar manner it will be seen that the greatest mean humidity. say for March, is about 66° and the least mean humidity for the month 48°; in other words, at Perth, the degree of saturation of the atmosphere by aqueous vapour for the month of March ranges between 66% and 48%.

GRAPHS SHEWING ANNUAL FLUCTUATIONS OF MEAN RAINFALL AND MEAN EVAPORATION IN SEVERAL PARTS OF THE COMMONWFALTH OF AUSTRALIA.

(For Explanation see next page.)

Explanation of the Graphs of Rainfall and Efaporation.-On the preceding graphs thick lines denote rainfall and thin lines evaporation, and shew the fluctuation of the mean rate of fall per month throughout the year. The results, plotted from the Climatological Tables hereinafter. are shewn in inches (see the outer columns), and the corresponding metric scale (centimetres) is shewn in the two inner columns. The evaporation is not given for Darwin and Daly Waters.

Interpretation of the Grapes.-The distance for any date from the zero line to the curve, represents the average number of inches, reckoned as per month, of rainfall at that date. Thus, taking the curves for Adelaide, on the 1st January the rain falls on the average at the rate of about four-fifths of an inch per month, or, say, at the rate of about $9 \frac{1}{2}$ inches per year. In the middle of June it falls at the rate of nearly 3 inches per month, or, say, at the rate of about 36 inches per year. At Dubbo the evaporation is at the rate of nearly $11 \frac{1}{4}$ inches per month about the midale of January, and only about $1 \frac{1}{2}$ inches at the middle of June.

TABLE SHEWING MEAN ANNUAL RAINFALL AND EVAPORATION IN INCHES OF THE PLACES SHEWN ON PRECEDING PAGE, AND REPRESENTED BY THE.GRAPHS.

-	Rainfall.	Evaporation.	-	Rainfall.	Evaporation.
Perth	33.11	66.13	Darwin...	61.72	-
Adelaide	21.04	54.21	Daly Waters...	27.95	-
Brisbane	46.95	51.19	Alice Springs...	10.93	97.10
Sydney	47.99	36.92	Dubbo \ldots	22.30	66.37
Melbourne	25.51	38.38	Laverton, W.A.	9.24	-
Hobart	23.57	32.42	Coolgardie ...	9.09	S7.74

GRAPHS SHEWING ANNUAL FLUCTUATIONS OF MEAN BAROMETRIC PRESSURE FOR THE CAPITALS OF THE SEVERAL STATES OF THE COMDONWEALTH OF AUSTRALIA.

Explanation of the Graphs of Barometric Pressore.-On the above graphs the lines representing the yearly fluctuation of barometric pressure at the State capital cities are means for long periods, and are plotted from the Climatological Tables given hereinafter. The pressures are shewn in inches on about ρ_{8} times the natural scale, and the corresponding pressures in centimetres are also shewn in the two inner columns, in which each division represents one millimetre.

Interpretation of the Barometric Graphs.-Taking the Brisbane graph for purposes of illustration, it will be seen that the mean pressure on 1st January is about 29.87 inches, and there are maxima in the middle of May and August of about 30.10 and 30.08 respectively. The double maxima appear clearly on each graph.

Chart indicating the area affected and period of duration of the Longest Heat Wayes when the Maximum Temperature for consecutive 24 hours reached or exceeded 90° Fah.

Diagram showing the greatest number of consecutive days on which the Temperature in the shade was over 100° and also over 90° at the places indicated.

METEOROLOGICAL SUB-DIVISIONS.

West Austradia.
No.

1. East Kimberley.
2. West Kimberley.
3. North-West.
4. Gascoyne.
5. South-West.
6. Eucla.
7. Eastern.

Soute Augtraija.
8. Northern Torritory
9. Far North and N, W
10. West.

No.
11. Upper North.
11. North-Eert 13. Lower North. 14. Central.
15. Murray Valley.
16. South-East.

Queensland.

17. Peninsular.
18. Gulf.
19. Far West.
20. Central.

| 31. North Coast | 41. North-Eas |
| :--- | :--- | :--- |

No.
22. Central Coast.
24. South-East Goast.
24. Darling Downs.
25. Maranoa.
26. South-West.

New South Walfs.
27. Western.
28. North-West Plain.
29. North-West Slope.

31. North Coast.	41. North-East

No.
33. Central Tableland. 34. Cent. Westn. Slope. 35. Cent. Westn. Plain. 35. Riverina.
37. South-West Slope.
38. Southern Tableland 39. South Coast.

Victoria.
42. Central.
43. North Central 44. Northern Country. 45. Mallee. 46. Wimmera. 47. Western.

Tasmanta.

48. Northern
49. W.Coast Mt.Region 50. Central Plateau. 51. Midland.
50. East Coast.
51. Derwent. 54. South-Eastern.

The above are the meteorological sub-divisions adopted by H. A. HuNr, Esq., C'wealth. Meteorologist.

EXPLANATION OF GRAPH.

The six continuous curves on the upper part of the diagram shew the flnctuations of mean monthly temperatures of the Australian capitals from 1901 to 1909 . The base of each small square denotes one month, and the vertical side 2° Centigrade or 3.6° Fahrenheit.

The six curves in lower portion of the diagram similarly shew the fluctuations of the mean annual temperatures, from 1871 in the case of Adelaide, Sydney and Melbourne, from 1883, 1887 and 1897 in the case respectively of Hobart, Brisbane and Perth. The base of each rectangle represents one year, and the vertical side 0.3° Centigrade or 0.54° Fahrenbeit.

The map shews the areas affected by given amounts of annual rainfall, and is elsewhere given.

COMPARISON OF RAINFALLS AND TEMPERATURES
of Cities of the World with those of australia.

Place.	Height above M.S.L.	Annual Rainfall.			Temperature.					
		$\begin{aligned} & \dot{\oplus} \\ & \text { 憲 } \\ & \text { O } \\ & 4 \end{aligned}$								
	Ft	Ins.	Ins.	Ins.	Fainr.	Fahr.	Fahr.	Fahr.	Falir.	Fahr.
Amsterdam	6	27.29	40.59	17.60	63.2	36.8	90.0	4.1	64.4	35.4
Auckland	125	43.31	63.72	26.32	66.1	52.5	91.0	31.9	67.2	51.8
Athens	351	15.48	33.32	4.55	79.2	49.1	106.5	19.6	81.1	47.5
Bergen	146	89.10	102.80	73.50	56.8	34.5	88.5	4.8	57.9	33.6
Berlin	115	22.95	30.04	14.25	64.7	32.2	38.6	-13.0	66.0	30.0
Berne	1.877	36.30	58.23	2469	62.2	30.1	91.4	- 3.6	64.4	28.0
Bombay.	37	71.15	114.89	33.41	93.5	75.1	100.0	55.9	84.8	74.2
Breslau.	482	22.00	28.01	16.45	63.9	30.0	100.0	-23.4	65.5	29.3
Brussels .	328	28.35	41.18	17.73	62.6	36.0	95.5	-4.4	63.7	34.5
Budapest...	500	25.20	35.28	16.79	68.6	30.2	98.6	-5.1	70.4	28.2
Buenos Ayres	72	36.82	80.73	21.53	73.2	51.5	103.1	25.9	74.2	50.5
Calcutta ..:	21	61.98	89.32	39.38	94.9	67.1	108.2	44.2	85.4	65.5
Capetown	40	25.50	36.72	17.71	68.1	54.7	102.0	34.0	68.8	53.9
Caracas .	3,420	30.03	47.36	23.70	68.3	65.3	87.8	48.2	69.2	63.7
Chicago.	823	33.54	45.86	24.52	69.2	25.4	103.0	-23.0	72.4	24.0
Christchurch	25	25.45	35.30	13.54	61.1	43.4	95.7	21.3	61.6	42.4
Christiania	82	22.52	31.73	16.26	61.0	24.4	95.9	-21.1	62.6	23.9
Colombo...	40	83.83	139.70	51.60	81.5	79.9	95.8	65.0	82.6	79.1
Constantinople	245	28.75	42.74	14.78	74.0	43.5	103.6	13.0	75.7	42.0
Copemhagen	46	22.33	28.78	13.94	60.7	32.1	90.5	-13.0	62.2	31.4
Dresden ...	115	26.80	34.49	17.72	62.9	32.4	93.4	-15.3	64.4	31.6
Dublin	47	27.66	35.56	16.60	59.4	42.0	87.2	13.3	60.5	41.7
Dunedin .	3 CO	37.06	53.90	22.15	57.3	43.1	94.0	23.0	57.9	42.0
Durban	260	40.79	71.27	27.24	75.6	64.4	110.6	41.1	76.7	63.8
Edinburgh	441	25.21	32.05	16.44	55.8	38.8	85.3	16.6	57.2	38.3
Geneva	1,328	33.48	46.89	21.14	64.4	33.7			62.2	32.2
Genos	157	51.29	108.22	28.21	73.8	46.8	94.5	16.7	75.4	45.5
Glasgow ...	184	38.49	56.18	29.05	52.7	41.0	84.9	6.6	58.0	38.4
Greenwich	159	24.12	35.54	16.38	61.3	39.3	100.0	4.0	62.7	38.6
Hong Kong	110	84.10	119.72	45.83	81.3	60.3	97.0	32.0	81.8	58.1
Johannesburg	5.750	31.63	50.00	21.66	65.4	54.4	94.0	23.3	68.2	48.9
Leipzig ...	384	24.69	31.37	17.10	63.1	31.5	97.3	-14.8	64.8	30.6
Lisbon	312	29.18	59.79	17.32	69.6	51.3	94.1	32.5	702	49.3
London ..	18	24.04	38.20	18.23	61.2	39.3	94.0	9.4	62.8	38.7
Madras ...	22	49.06	88.41	18.45	86.7	76.0	113.0	57.5	87.6	75.3
Madric ...	2,149	16.23	27.48	9.13	73.0	41.2	107.1	10.5	75.7	39.7
Marseilles	246	21.88	43.04	12.28	70.3	45.3	100.4	11.5	72.1	43.3
Moscow	526	18.94	29.28	12.07	63.4	14.7	99.5	-44.5	66.1	11.9
Naples ..	489	34.00	56.58	21.75	73.6	48.0	99.1	23.9	75.4	46.8
New York	314	42.47	59.68	28.78	72.1	31.7	100.0	-6.0	74.5	30.3
Ottawa	294	33.40	44.44	26.36	67.2	14.1	98.5	-33.0	69.7	12.0
Paris	165	21.92	29.56	16.44	63.5	37.1	101.1	-14.1	65.8	36.1
Pekin	143	24.40	36.00	18.00	77.7	26.6	114.0	-5.0	79.8	23.6
Quebec	296	40.46	47.57	32.12	63.5	12.4	95.5	-34.3	66.3	10.1
Rome	166	32.57	57.89	12.72	74.3	46.0	104.2	17.2	76.1	44.6
San Francisco	155	22.83	38.82	9.31	59.0	51.0	101.0	29.0	61.0	50.0
Shanghai	14	44.13	62.52	27.91	77.4	39.4	102.9	102	79.7	37.4
Singapore	8	91.99	158.68	32.71	81.2	78.6	94.2	63.4	81.5	78.3
Stockholm	146	18.31	25.46	11.78	59.7	27.0	91.8	-22.0	62.1	25.7
St. Petersburg	16	21.30	29.52	13.75	61.1	17.4	97.0	-38.2	63.7	15.2
Tokio ...	70	59.17	77.10	45.72	73.9	38.9	97.9	15.4	77.7	37.1
Trieste	85	42.94	63.14	26.57	73.9	41.3	99.5	14.0	76.3	39.9
Vienna	663	24.50	33.90	16.50	65.7	30.4	97.7	-8.0	67.1	28.0
Vladivostock	55	19.54	33.60	9.39	63.9	11.0	95.7	-21.8	69.4	6.1
Washington	75	43.80	61.33	18.79	74.7	34.5	104.0	-15.0	76.8	32.9
Wellington (N.Z.)	110	49.70	67.68	30.02	61.7	48.4	98.0	30.0	62.4	47.5
Zurich ...	1,542	45.15	78.37	29.02	63.3	31.3	94.1	-0.8	65.1	29.5

Canberra (Dist.) Queanbeyan	$\left(\begin{array}{r}2,000 \\ \text { to } \\ 2,900\end{array}\right\}$	22.39	41.29	10.45	$\stackrel{*}{*}$	$\begin{gathered} \dagger \\ 41.8 \end{gathered}$	104.0	11.1	68.4	39.7
The STATE CaPITALS.										
					*	t				
Perth ...	197	33.11	46.73	20.48	73.0	55.7	107.9	35.3	74.2	55.0
Adelaide...	140	21.04	30.87	13.43	73.1	52.9	116.3	32.0	74.2	51.5
Brisbane ...	137	46.95	88.26	16.17	76.7	59.5	108.9	36.1	772	58.0
Sydney ...	146	47.97	82.76	21.49	70.9	53.8	108.5	35.9	71.6	52.3
Melbourne	115	25.51	36.61	15.61	66.5	49.9	$111: 8$	27.0	67.5	48.4
Hobart ..	160	23.57	40.67	13.43	61.7	46.6	105.2	27.0	62.4	45.3

[^5]17. Climatological Tables.-The means, averages, extremes, totals, etc., for a number of climatological elements have been determined from long series of observations at the Australian capitals. These are given in the following tables:-

Lat. $31^{*} 58^{\prime}$ S., Long. $115^{\circ} 51^{\prime}$ E. HEIGHt above M.S.L. 197 Ft.
Barometer, Vind, Evaporation, Lightning, Olouds, and Clear Days.

Month.				Wind.												
		$\begin{gathered} \text { Grea } \\ \text { Numi } \\ \text { Mile } \\ \text { one } \end{gathered}$	atest her of es in day.	Mea Hour Pres sure llbs.		Total Miles.	Prevail Directi									
No. of yrs. over which observation extencls				28		15	5	15		15	15		14	15	16	15
Jenuary		29.911		797	27/98	0.71		11,458	S		10.39	1.4	2.7	16.7		
February		29.927		650	6/0s	0.67		10,697	SSE		8.76	1.2	2.8	14.1		
March			1,90	601	1749	0.55		10,100	SSE		7.67	1.0	3.3	14.3		
April			30.074	95.5	2500	0.45		8.851	SE		4.84	0.8	4.4	8.9		
May		30.065		7 tis	$5 / 12$	0.36		8,159	ENE		2.65	2.0	6.4	6.2		
June				861	27110	0.40		8.286	N N		1.69	1.7	5.8	4.7		
July		30	30.436 30.06	949	11.97	0.41		8.659	N N		1.63	2.5	5.6	6.2		
August		$30.0) 8$30.057		966	1503	0.43		8.924	WS ${ }^{\text {S }}$		2.35	1.4	5.4	6.7		
September				864	$11 / 05$	0.49		9.186	SWW		3.30	1.7	5.4	6.8		
October				6 so	$15 / 98$	0.55		10,081	S S W		5.27	0.9	5.2	7.8		
November		$30.0 \times 4$29.994		777	1897	0.61		10.240	S		7.72	0.8	3.9	12.3		
December		29.932		672	31/98	0.67		11,115	S		9.86	1.5	3.1	16.0		
$\text { Year }\left\{\begin{array}{l} \text { Totals } \\ \text { A verages } \\ \text { Extremes } \end{array}\right.$		$30 . \overline{0} 21$		$166 \overline{15}$	$5 / 8^{\prime} 03$	0.52		$9 . \overline{600}$	\bar{S}		66.13	16.9	- 4.4	120.7		
'TEMPERATURE.																
Month.		Mean Temperature.			Extreme Shade Temperature.					Fxtreme Temperature.						
		Mean Max.	$\left\lvert\, \begin{aligned} & \text { Mean } \\ & \text { Min. } \end{aligned}\right.$	Mean	Highest.			Lowest.		-Highest in Sun.		Lowest on Grase.				
No. of yrs. over which observation extends		16 16		16	16		16		16	15		14				
January		84.2	63.0	73.6	107.0	16/97		25 6 2510	56.4	171.1	4/04	42.4	25/02			
Eebruary		85.0	63.4	74.2	106.8	6/98		. 7 1/02	59.1	169.0	4/99	41.2	1/02			
March		81.6	60.7	71.2	104.3	6,7/06		.8 8/03	58.5	161.6	+	36.7	8/03			
A pril		76.1	56.8	66.4	99.7	$9 / 10$. 4 2/01	57.3	152.0	11/01	35.0	2/01	-		
May		... 68.5	52.4	60.4	90.4	$2 / 07$	39.	9.9	50.5	138.8	15/02	31.0	28/12	-		
June		... 63.6	48.9	56.2	77.1	$9 / 09$.9 14/98	40.2	131.0	5/04	30.2	14/98			
July		... 62.5	47.5	55.0	73.8	24/99		. 4 19/06	37.4	131.0	31/93	27.6	21/11	-		
August		... 63.9	48.0	56.0	80.4	30102	35.	5.3 31/08	45.1	134.1	\ddagger	27.9	10/11			
September		$\cdots 65.7$	50.1	57.9	88.4	$28 / 00$	39.0	.0 18/00	47.4	144.8	19/02	32.0	17/12	-		
October		... 69.2	52.6	61.9	93.4	17/06	41.2	$\begin{array}{ll}.2 & 1003\end{array}$	54.2	152.6	30.0	33.4	1/10			
November		74.8	56.0	65.4	100.9	$27 / 1$	42.0	12/04	58.9	161.5	17/03	35.5				
December		80.8	60.5	70.6	107.9	20/04		C $2 / 10$	59.9	168.3	20/04	39.1	2/10			
$\operatorname{Year}\left\{\begin{array}{l} \mathrm{A} \mathbf{y} \\ \mathrm{Ex} \end{array}\right.$	rages remes	73.0	55.0	04.0	107.9 ${ }_{201}$	/12/04		$3_{31 / 8108}^{\text {- }}$	72.6	171.1	$4 / 1 / 04$	27.6	$1 / 7 / 11$	二		

-17 and 18, 1899. $+1 / 59$ and 1/09. $\ddagger 29 / 1898$ and 18/1902. §6/10 and 14/12. HUMIDITY, RAINFALL, AND DEW.

[^6] 1894. §January, February, March, November, and December, various years.

CLIMATOLOGICAL DATA FOR ADELAIDE, S.A.

Lat. $34^{\circ} 56^{\prime}$ S., Long. $138^{\circ} 35^{\prime}$ E. Height above M.S.L. 140 Ft.
Barometer, Wind, Evaporation, Lightíng, olouds, and Clear days.

-10/4/96 and 31/8/97. \dagger With tendency N.E. \ddagger With tendency S.W II Equal.
TEMPERATURE.

* Taken at Lighthouse at entrance to Port River. $\quad+26 / 1895$ and 24/1904. $\ddagger 16 / 61$ and 4/06. HUMIDITY, RAINFALL, AND J)WW.

Month.			Humidity.			Rainfall.					Dew.	
No of yrs.over which observation extends			45	45	45	74	74	74	74	74	-	41
January			36	59	33	0.73	4	$4.00 \quad 1850$	nil	$2.30 \quad 2 / 89$		4
February		...	42	56	37	0.60	4	2.671858	nil t	$1.81 \quad 5 / 90$	-	5
March		\ldots	47	58	40	1.06	6	$\begin{array}{lll}4.60 & 1878\end{array}$	nil	3.50 5/78		10
A pril		\ldots	56	72	44	1.87	10	6.781853	0.061910	$315 \quad 5 / 60$		14
May		\ldots	68	76	49	2.74	13	7.751875	$0 . \geqslant 01891$	8.75 1/53		16
June			77	84	70	3.10	16	7.80	0.421886	1.45 L		15
July			76	87	72	2.66	16	5.381865	0.361899	1.75 10/65		17
August		\ldots	71	77	65	2.51	16	$6.24 \quad 1852$	0761911	2.23 19/51	-	16
September	...	\cdots	63	72	54	1.95	14	4.64 1540	0.451896	1.42 25/93	-	15
October			52	67	44	1.74	11	3.831870	0.311888	2.24 16/08		12
November			44	57	38	1.14	8	3.551851	0.041885	1.88 28/58		7
December	\ldots	...	39	50	33	0.94	6	3.981861	nil 1904	1.89 29/40		4
			$\overline{54}$	$\frac{-}{87}$	二	21.04	124-	${ }_{7.80}{ }^{-}$	${ }_{\text {nil }}{ }^{-}$	$\begin{gathered} - \\ 3.50^{-} \\ 5 / 3 / 78 \end{gathered}$	-	135
			二									
			$6 / 47$									

- 1848. 1849, 1878 and 1906. † 1848, 1860, etc. $\ddagger 1859$, etc. § January, February. March and Dacember, various years. If and 25/84.

＊10／11／04．$+9 / 96$ and 5／03．$\ddagger 12 / 94$ and $2 / 96$ ．$\|$ 12／7／94 and 2／7／96．
Humidity，Rainfalil，and Dew．

Montlı．			Humidity．			Rainfall． 3					Dew．	
			总駕品									
No of yrs over which observation extends			26	26	26	61	53	61	61		－	－
January		\ldots	67	82	54	6.66	14	27.721895	0.611882	18.31 21／87	－	－
February	．．．	．．．	71	84	57	6.63	14	40.391893	0.771904	$8.3616 / 93$	－	－－
March		．．．	74	87	56	6.20	16	34.041870	0.581868	11.18 14／08	－	－
April		．．．	72	80	61	3.64	13	$\begin{array}{lll}15.28 & 1867\end{array}$	0.041897	3.93 20／94	－	
May		．．．	74	86	63	2.92	10	$\begin{array}{lll}13.85 & 1876\end{array}$	0.001846	$5.62 \quad 9 / 79$	－	
June		．．．	74	83	64	2.62	8	14.031873	$0.02 \quad 1895$	$6.01 \quad 9 / 93$	－	
July		\ldots	72	80	65	2.33	8	8.461889	$0.00 \quad 1841$	$3.64 \pm$	－	
August		\ldots	70	80	63	2.35	7	14.671879	0.00 ＊	4.89 12／87	－	－
September		\cdots	65	76	43	2.05	8	5.431886	$0.10 \quad 1907$	2.46	－	
October		．．．	62	74	51	2.78	10	9.991882	0.141900	1.95 20／89	－	－
November		\ldots	60	73	52	3.65	10	10.431846	0.001842	44.6 16／86	－	－
December	．．．		63	68	53	5.12	12	13.971910	0.351865	$6.60 \quad 28 / 71$	－	－
T＇				－	－	46.95	130	－	－－	－		－
Year ${ }^{\text {Ave }}$	erage		69	$\overline{7}$	－	－	－	－	－0，	－	－	－
Ext	trem		－	87	43	－	－	$40.39{ }^{2 / 1893}$	$0.00+$	18.31 21／1／87	－	－

[^7]
CLIMATOLOGICAL DATA FOR SYDNEY, N.S.W.

Lat. $33^{\circ} 52^{\prime}$ S., Long. $151^{\circ} 12^{\prime}$ E. Height above M.s.L. 146 Ft.
Barometer, Wind, evaporation, Lightning, Clouds, and Clear days.

Temperature.

- Taken at Fort Denison.

HUMIDITY, RAINFALL, AND DEW.

Month.	Humidity.			Rainfall.					Dew.	
Mo. of yrs. over which observation extends	54	54	54	54	54	54	54	54	52	52
January	70	78	59	3.62	14.8	15.261911	0.431888	$7.08 \quad 13 / 11$	0.002	1.3
February	73	81	60	4.74	14.3	18.561873	0.341902	8.90 25.73	0004	2.0
March ...	75	85	63	5.14	15.4	18.701870	0.421876	5.66 25/90	0.007	3.3
April	77	87	64	6.25	13.2	24.491861	0.061868	7.52 29/60	0016	6.0
May	77	90	66	4.92	15.4	20.871889	0.211888	$8.36 \quad 28 / 89$	0.028	6.6
June	76	89	68	5.13	12.9	$\begin{array}{lll}16.30 & 1885\end{array}$	0.191904	5.1716184	0.018	5.5
July ...	77	88	66	4.79	12.5	13.211900	0.121868	5.72 28/08	0.016	5.4
August ...	74	84	64	3.26	11.6	14.8918889	0.041885	5.33 2/60	0.014	8.0
Septernber ...	69	79	60	2.85	12.8	14.051879	0.081862	5.69 10779	0.008	4.0
October ...	68	77	55	2.79	12.6	10.811902	0.211867	6.37 13/02	0.006	3.0
November ...	67	79	54	2.91	12.5	9.881865	0.191910	4.23 19/00	0.004	8.3
December	68	77	52	2.59	12.8	8.471910	0.451876	$4.75 \quad 13 / 10$	0.003	1.6
Totals		-	-	47.89	159.6	-	-	-	0.120	46.0
Vear $\left\{\begin{array}{l}\text { Averages } \\ \text { Extremes }\end{array}\right.$...	$\stackrel{73}{-}$	$\overline{90}$	58	-	-	24.49	0.04	8.80	二	二
						4/1861	8/1885	25/2/73		

Lat, $87^{\circ} 50^{\prime}$ S., LONG. $144^{\circ} 59^{\prime}$ E. Height above M.S.L. 115 Ft.
Barometer, Wind, Evaporation, Lightning, olouds, and Clear Days.

* 17/1884 and 20/1897.

Humidity, Rainfall, and Dew.

- signifles no record kept.

CLIMATOLOGICAL DATA FOR HOBART, TASMANIA.

Latr. $42^{\circ} 53^{\prime}$ S., Long. $147^{\circ} 20^{\prime}$ E. Height above M.S.L. 160 Ft.
barometer, Wind, Evaporation, Lightning, Clouds, and Clear Days.

*24/84, 13/87, 11/85, and 7/00. +5/86 and 13/05. $\ddagger 1886$ and 1899.
HUMIDITY, RAINFALL, AND DEW.

Month.	Humidity.			Rainfall.					Dew.	
No. of yrs. over which observation extends	33	33	33	70	54	70	70	61	-	-
January	52	75	51	1.80	10	5.91	0.031841	2.59 30/05	-	-
February ...	64	76	51	1.45	9	9.151854	0.071847	$4.50{ }^{*} 25 / 54$	-	-
March	68	76	59	1.65	10	7.601854	0.021843	2.06 14/11	-	-
April	75	85	60	1.50	11	6.501909	0.071904	$5.02 \quad 20 / 09$	-	
May	80	90	68	1.91	14	6.371905	0.101843	3.22 14/58	-	-
June	83	94	75	2.22	15	8.151888	0.221852	4.11 14/89	-	-
July	83	97	74	2.10	15	5.981849	0.30	2.00 18/78	-	
August	80	98	68	1.83	14	10.161858	$\begin{array}{lll}0.23 & 1854\end{array}$	4.35 12/58	-	
September ...	74	87	61	2.14	15	$\begin{array}{ll}7.14 & 1844\end{array}$	0.391847	3.50 29/84	-	
October ...	67	75	58	2.24	16	6.671906	0.261850	2.58 4/06	-	
November ...	68	74	50	2.50	14	8.941849	0.161868	3.70 30/85	-	-
December ...	59	73	51	1.93	12	9.001875	0.111842	$2.27 \quad 27 / 07$	-	
Tokars	-	-	-	23.57	155	-	-	-	-	-
Year $\left\{\begin{array}{l}\text { Averages } \\ \text { Extremes }\end{array}\right.$		$\overline{97}$	50	-	-	10.16	0.02	$5.02{ }^{-}$	-	-
						10.168/1858	- 3/1843	5.02 20/4/09	-	

- Signifies no record kept. $\quad 4.50,25 / 54 ; 4.18,26.54$.

[^0]: 1. The extreme points are "Steep Point" on the west, "Cape Byron" on the cast, "Cape York" on the north, "Wilson's Promontory" on the south, or, if Tasmania be included, "South Fast Cape." The limits, according to the 1903-4 edition of "A Statistical Account of Australia and New Zealand," p. 2, and, according to Volume XXV. of the "Encyclopedia Britannica,"tenth edition, p. 787, are respectively $113^{\circ} 5^{\prime}$ E., $153^{\circ} 16^{\prime}$ E., $10^{\circ} 39^{\prime} \mathrm{S}$., and $39^{\circ} 11^{\prime}$ S., but these figures are obviously defective. A similar inaccuracy appears in the XI. edition of the Encyclopædia.
 2. Its correct value for 1914 is $23^{\circ} 27^{\prime} 1^{\prime \prime} .70$, and it decreases about $0^{\prime} .47$ per annum.
[^1]: - Danish colony only.

[^2]: * Contributed by Professor W. G. Woolnough, D.Sc., University of Perth, W.A.

[^3]: 1. In the article "Australia" in the Encyelopædia Britannica, Vol. XXX., p. 796, this area is given as $1,145,000$ square miles.
 2. Given as $1,801,700$ square miles in the work above quoted, where, however, the statistics are said "to refer only to the continental States of the Federation, not to Tasmania."
[^4]: 1. In Australia artificial storage ponds or reservoirs are called "tanks."
[^5]: Mean of the three hottest months. t Mean of the three coldest months.

[^6]: *1888. 1894, 1897, and 1911. +1885, 1891, 1896, and 1903. $\ddagger 1877,1884$, and $1886 . \quad| | 1890$ and

[^7]: ＊1862，1869， 1880.
 －signifies no record kept．
 $1862,1869,1880 . \quad \dagger 5 / 1846,7 / 1841,8 / 1862,1869,1880,11 / 1842 . \quad \ddagger 15 / 76,16 / 89$.
 ＊＊Means and Extremes to end 1912.

